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Motivation

» The drawbacks of the conventional method:
= Computationally complex and time
consuming
» |naccurate and low level of confidence
= QOverestimation of actual MTTF
= Machine learning (ML) is a powerful tool to
develop predictive maintenance approaches
= The ability of ML to glean insights from data
within a complex and dynamic environment
= The ability of ML to adjust to new and unseen
data

Objectives

» To develop a laser lifetime prediction model

pased on ML modelling the dependency

petween MTTF and the different laser

parameters

= Accurate prediction of MTTF under different
operating conditions
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1550 nm InGaAsP MQW DFB laser

Electro-Optical Characteristics:
= -40°C < T. <£85°
= 1530 nm < A< 1570 nm
= 09V <V<13V
= P<10MW
= SMSR > 30dB
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ANN Model

Two hidden layers:

» 1st hidden layer: 200 neurons
» 2nd hidden layer: 100 neurons

An artificial neural network (ANN) based

approach predicts the mean-time-to
failure (MTTF) of laser under different

operating conditions with higher accuracy

compared to the accelerated aging tests.

ANN Model for Laser Lifetime Prediction
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» A novel approach for laser lifetime prediction using ANN has been

presented

» The proposed ANN Model outperforms the conventional laser lifetime

projection method

= Higher accuracy and applicability to unseen operating conditions

Next Steps

» Collection of experimental or in-field data for the performance
evaluation of the developed model

If you want to know more
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Results

Evaluation Metrics
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ANN Model vs Conventional Method

ANN Performance Evaluation

= RMSE = 0.54] year]
= Scoring function = 5.29 x 102

Prediction Error Distribution
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Conventional Method

 Accelerated aging tests for 25 devices under
constant power 10 mW at 70 °C conducted for
5,000 hours

* Failure criterium defined as 50% increase of
the operating current

 Probability density function of life modelled by
log-normal distribution
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Comparison of Results
Test Dataset

* Similar optical power P = 10 mW
* Different (case) temperatures
* 334 samples

Evaluation Metric

* RMSE
« Scoring function

Evaluation Metric Conventional
Method

RMSE[year] 0.8 12.6

Scoring Function 3.46 x 107 11.51 x 102
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